Curve name | $X_{79c}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 3 \\ 4 & 9 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 3 \\ 12 & 11 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{79}$ | ||||||||||||
Curves that $X_{79c}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{79c}$ | |||||||||||||
Curves that minimally cover $X_{79c}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -891t^{12} - 7452t^{11} - 28944t^{10} - 65880t^{9} - 92340t^{8} - 80352t^{7} - 69120t^{6} - 160704t^{5} - 369360t^{4} - 527040t^{3} - 463104t^{2} - 238464t - 57024\] \[B(t) = 10206t^{18} + 127332t^{17} + 749412t^{16} + 2666736t^{15} + 5957712t^{14} + 6676992t^{13} - 6537888t^{12} - 49180608t^{11} - 125846784t^{10} - 211545216t^{9} - 251693568t^{8} - 196722432t^{7} - 52303104t^{6} + 106831872t^{5} + 190646784t^{4} + 170671104t^{3} + 95924736t^{2} + 32596992t + 5225472\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 26675x - 378250$, with conductor $5600$ | ||||||||||||
Generic density of odd order reductions | $9249/57344$ |