Curve name | $X_{79j}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 6 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 3 \\ 12 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 9 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{79}$ | ||||||||||||
Curves that $X_{79j}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{79j}$ | |||||||||||||
Curves that minimally cover $X_{79j}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -3564t^{16} - 44064t^{15} - 206496t^{14} - 402624t^{13} + 32832t^{12} + 1537920t^{11} + 2153088t^{10} - 1112832t^{9} - 5457024t^{8} - 2225664t^{7} + 8612352t^{6} + 12303360t^{5} + 525312t^{4} - 12883968t^{3} - 13215744t^{2} - 5640192t - 912384\] \[B(t) = 81648t^{24} + 1508544t^{23} + 11617344t^{22} + 45968256t^{21} + 79398144t^{20} - 89641728t^{19} - 799573248t^{18} - 1777614336t^{17} - 1148712192t^{16} + 3464460288t^{15} + 10703923200t^{14} + 12635025408t^{13} - 25270050816t^{11} - 42815692800t^{10} - 27715682304t^{9} + 18379395072t^{8} + 56883658752t^{7} + 51172687872t^{6} + 11474141184t^{5} - 20325924864t^{4} - 23535747072t^{3} - 11896160256t^{2} - 3089498112t - 334430208\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 209132x + 8303344$, with conductor $15680$ | ||||||||||||
Generic density of odd order reductions | $419/2688$ |