| Curve name | $X_{82d}$ | 
| Index | $48$ | 
| Level | $16$ | 
| Genus | $0$ | 
| Does the subgroup contain $-I$? | No | 
| Generating matrices | $
\left[ \begin{matrix} 5 & 15 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 5 & 10 \\ 0 & 5 \end{matrix}\right],
\left[ \begin{matrix} 1 & 0 \\ 14 & 7 \end{matrix}\right]$ | 
| Images in lower levels |  | 
| Meaning/Special name |  | 
| Chosen covering | $X_{82}$ | 
| Curves that $X_{82d}$ minimally covers |  | 
| Curves that minimally cover $X_{82d}$ |  | 
| Curves that minimally cover $X_{82d}$ and have infinitely many rational 
points. |  | 
| Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is 
given by
\[y^2 = x^3 + A(t)x + B(t), \text{ where}\]
\[A(t) = -17010t^{20} - 312336t^{19} - 2677320t^{18} - 14580000t^{17} - 
57887784t^{16} - 181336320t^{15} - 470240640t^{14} - 1039993344t^{13} - 
1999702080t^{12} - 3384737280t^{11} - 5078502144t^{10} - 6769474560t^{9} - 
7998808320t^{8} - 8319946752t^{7} - 7523850240t^{6} - 5802762240t^{5} - 
3704818176t^{4} - 1866240000t^{3} - 685393920t^{2} - 159916032t - 17418240\]
\[B(t) = -851472t^{30} - 23397984t^{29} - 306708768t^{28} - 2575694592t^{27} - 
15696244800t^{26} - 74432151936t^{25} - 286950169728t^{24} - 925319614464t^{23} 
- 2541686936832t^{22} - 6010028969472t^{21} - 12279188224512t^{20} - 
21583379460096t^{19} - 32068140143616t^{18} - 38352876779520t^{17} - 
31244579629056t^{16} + 62489159258112t^{14} + 153411507118080t^{13} + 
256545121148928t^{12} + 345334071361536t^{11} + 392934023184384t^{10} + 
384641854046208t^{9} + 325335927914496t^{8} + 236881821302784t^{7} + 
146918486900736t^{6} + 76218523582464t^{5} + 32145909350400t^{4} + 
10550045048832t^{3} + 2512558227456t^{2} + 383352569856t + 27901034496\] | 
| Info about rational points | 
| Comments on finding rational points | None | 
| Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 210x - 1168$, with conductor $2304$ | 
| Generic density of odd order reductions | $403/1792$ |