| Curve name | $X_{82}$ | 
| Index | $24$ | 
| Level | $8$ | 
| Genus | $0$ | 
| Does the subgroup contain $-I$? | Yes | 
| Generating matrices | $
\left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 1 & 0 \\ 6 & 7 \end{matrix}\right],
\left[ \begin{matrix} 1 & 3 \\ 0 & 3 \end{matrix}\right]$ | 
| Images in lower levels |  | 
| Meaning/Special name |  | 
| Chosen covering | $X_{35}$ | 
| Curves that $X_{82}$ minimally covers | $X_{35}$, $X_{41}$, $X_{43}$ | 
| Curves that minimally cover $X_{82}$ | $X_{261}$, $X_{263}$, $X_{82a}$, $X_{82b}$, $X_{82c}$, $X_{82d}$ | 
| Curves that minimally cover $X_{82}$ and have infinitely many rational 
points. | $X_{82a}$, $X_{82b}$, $X_{82c}$, $X_{82d}$ | 
| Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{82}) = \mathbb{Q}(f_{82}), f_{35} = 
\frac{4f_{82}^{2} - 8}{f_{82}^{2} + 4f_{82} + 2}\] | 
| Info about rational points | None | 
| Comments on finding rational points | None | 
| Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 583x - 5213$, with conductor $19200$ | 
| Generic density of odd order reductions | $401/1792$ |