Curve name | $X_{84e}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 8 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 8 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{84}$ | ||||||||||||
Curves that $X_{84e}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{84e}$ | |||||||||||||
Curves that minimally cover $X_{84e}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{16} - 1080t^{14} - 2916t^{12} + 2592t^{10} + 26460t^{8} + 49896t^{6} + 39204t^{4} + 10800t^{2} - 432\] \[B(t) = 432t^{24} + 6480t^{22} + 57024t^{20} + 348192t^{18} + 1420416t^{16} + 3763584t^{14} + 6344352t^{12} + 6461856t^{10} + 3344976t^{8} + 114480t^{6} - 712800t^{4} - 243648t^{2} - 3456\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 18075x + 8009750$, with conductor $1800$ | ||||||||||||
Generic density of odd order reductions | $691/5376$ |