Curve name | X84g | ||||||||||||
Index | 48 | ||||||||||||
Level | 16 | ||||||||||||
Genus | 0 | ||||||||||||
Does the subgroup contain −I? | No | ||||||||||||
Generating matrices | [3303],[7087],[1083],[5001] | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | X84 | ||||||||||||
Curves that X84g minimally covers | |||||||||||||
Curves that minimally cover X84g | |||||||||||||
Curves that minimally cover X84g and have infinitely many rational points. | |||||||||||||
Model | P1, a universal elliptic curve over an appropriate base is given by y2=x3+A(t)x+B(t), where A(t)=−27t16−270t14−729t12+648t10+6615t8+12474t6+9801t4+2700t2−108 B(t)=−54t24−810t22−7128t20−43524t18−177552t16−470448t14−793044t12−807732t10−418122t8−14310t6+89100t4+30456t2+432 | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose 2-adic image is the subgroup | y2=x3−72300x−64078000, with conductor 14400 | ||||||||||||
Generic density of odd order reductions | 89/672 |