Curve name | $X_{84h}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{84}$ | ||||||||||||
Curves that $X_{84h}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{84h}$ | |||||||||||||
Curves that minimally cover $X_{84h}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{16} - 270t^{14} - 729t^{12} + 648t^{10} + 6615t^{8} + 12474t^{6} + 9801t^{4} + 2700t^{2} - 108\] \[B(t) = 54t^{24} + 810t^{22} + 7128t^{20} + 43524t^{18} + 177552t^{16} + 470448t^{14} + 793044t^{12} + 807732t^{10} + 418122t^{8} + 14310t^{6} - 89100t^{4} - 30456t^{2} - 432\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 72300x + 64078000$, with conductor $14400$ | ||||||||||||
Generic density of odd order reductions | $41/336$ |