Curve name | $X_{85o}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{85}$ | |||||||||
Curves that $X_{85o}$ minimally covers | ||||||||||
Curves that minimally cover $X_{85o}$ | ||||||||||
Curves that minimally cover $X_{85o}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{12} + 1728t^{10} - 4320t^{8} - 44928t^{6} + 260928t^{4} - 373248t^{2} - 27648\] \[B(t) = 432t^{18} - 10368t^{16} + 160704t^{14} - 1693440t^{12} + 10554624t^{10} - 35500032t^{8} + 52835328t^{6} + 331776t^{4} - 59719680t^{2} + 1769472\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 19596x + 2960624$, with conductor $4032$ | |||||||||
Generic density of odd order reductions | $635/5376$ |