Curve name | $X_{86b}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 8 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 8 & 7 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{86}$ | ||||||||||||
Curves that $X_{86b}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{86b}$ | |||||||||||||
Curves that minimally cover $X_{86b}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{12} - 1296t^{10} + 432t^{8} + 38016t^{6} + 112320t^{4} + 89856t^{2} - 6912\] \[B(t) = -432t^{18} - 7776t^{16} - 114048t^{14} - 1016064t^{12} - 4561920t^{10} - 9621504t^{8} - 6580224t^{6} + 5640192t^{4} + 7630848t^{2} + 221184\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + 2868x - 11536$, with conductor $2880$ | ||||||||||||
Generic density of odd order reductions | $25/224$ |