Curve name | $X_{86}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{36}$ | |||||||||
Curves that $X_{86}$ minimally covers | $X_{36}$ | |||||||||
Curves that minimally cover $X_{86}$ | $X_{184}$, $X_{197}$, $X_{201}$, $X_{205}$, $X_{212}$, $X_{229}$, $X_{337}$, $X_{345}$, $X_{86a}$, $X_{86b}$, $X_{86c}$, $X_{86d}$, $X_{86e}$, $X_{86f}$, $X_{86g}$, $X_{86h}$, $X_{86i}$, $X_{86j}$, $X_{86k}$, $X_{86l}$, $X_{86m}$, $X_{86n}$, $X_{86o}$, $X_{86p}$ | |||||||||
Curves that minimally cover $X_{86}$ and have infinitely many rational points. | $X_{197}$, $X_{205}$, $X_{212}$, $X_{229}$, $X_{86a}$, $X_{86b}$, $X_{86c}$, $X_{86d}$, $X_{86e}$, $X_{86f}$, $X_{86g}$, $X_{86h}$, $X_{86i}$, $X_{86j}$, $X_{86k}$, $X_{86l}$, $X_{86m}$, $X_{86n}$, $X_{86o}$, $X_{86p}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{86}) = \mathbb{Q}(f_{86}), f_{36} = \frac{-8}{f_{86}^{2} + 2}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 + 34884x + 2462449$, with conductor $1989$ | |||||||||
Generic density of odd order reductions | $83/672$ |