The modular curve $X_{86d}$

Curve name $X_{86d}$
Index $48$
Level $16$
Genus $0$
Does the subgroup contain $-I$? No
Generating matrices $ \left[ \begin{matrix} 3 & 3 \\ 8 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 1 \end{matrix}\right]$
Images in lower levels
LevelIndex of imageCorresponding curve
$2$ $3$ $X_{6}$
$4$ $6$ $X_{13}$
$8$ $24$ $X_{86}$
Meaning/Special name
Chosen covering $X_{86}$
Curves that $X_{86d}$ minimally covers
Curves that minimally cover $X_{86d}$
Curves that minimally cover $X_{86d}$ and have infinitely many rational points.
Model $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{12} - 1296t^{10} + 432t^{8} + 38016t^{6} + 112320t^{4} + 89856t^{2} - 6912\] \[B(t) = 432t^{18} + 7776t^{16} + 114048t^{14} + 1016064t^{12} + 4561920t^{10} + 9621504t^{8} + 6580224t^{6} - 5640192t^{4} - 7630848t^{2} - 221184\]
Info about rational points
Comments on finding rational points None
Elliptic curve whose $2$-adic image is the subgroup $y^2 = x^3 + 2868x + 11536$, with conductor $2880$
Generic density of odd order reductions $41/336$

Back to the 2-adic image homepage.