Curve name | $X_{86g}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 8 & 5 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{86}$ | ||||||||||||
Curves that $X_{86g}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{86g}$ | |||||||||||||
Curves that minimally cover $X_{86g}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{16} - 540t^{14} - 2916t^{12} + 5184t^{10} + 105840t^{8} + 399168t^{6} + 627264t^{4} + 345600t^{2} - 27648\] \[B(t) = 54t^{24} + 1620t^{22} + 28512t^{20} + 348192t^{18} + 2840832t^{16} + 15054336t^{14} + 50754816t^{12} + 103389696t^{10} + 107039232t^{8} + 7326720t^{6} - 91238400t^{4} - 62373888t^{2} - 1769472\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + 17925x + 180250$, with conductor $3600$ | ||||||||||||
Generic density of odd order reductions | $635/5376$ |