Curve name | $X_{86h}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{86}$ | ||||||||||||
Curves that $X_{86h}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{86h}$ | |||||||||||||
Curves that minimally cover $X_{86h}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{16} - 2160t^{14} - 11664t^{12} + 20736t^{10} + 423360t^{8} + 1596672t^{6} + 2509056t^{4} + 1382400t^{2} - 110592\] \[B(t) = -432t^{24} - 12960t^{22} - 228096t^{20} - 2785536t^{18} - 22726656t^{16} - 120434688t^{14} - 406038528t^{12} - 827117568t^{10} - 856313856t^{8} - 58613760t^{6} + 729907200t^{4} + 498991104t^{2} + 14155776\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + 71700x - 1442000$, with conductor $14400$ | ||||||||||||
Generic density of odd order reductions | $41/336$ |