Curve name | $X_{86i}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 5 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 3 \\ 0 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{86}$ | |||||||||
Curves that $X_{86i}$ minimally covers | ||||||||||
Curves that minimally cover $X_{86i}$ | ||||||||||
Curves that minimally cover $X_{86i}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{8} - 864t^{6} + 4320t^{4} + 24192t^{2} - 1728\] \[B(t) = 432t^{12} + 5184t^{10} + 77760t^{8} + 483840t^{6} + 684288t^{4} - 912384t^{2} - 27648\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 + 319x + 321$, with conductor $960$ | |||||||||
Generic density of odd order reductions | $691/5376$ |