Curve name | $X_{86o}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 3 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{86}$ | |||||||||
Curves that $X_{86o}$ minimally covers | ||||||||||
Curves that minimally cover $X_{86o}$ | ||||||||||
Curves that minimally cover $X_{86o}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{12} - 432t^{10} - 1080t^{8} + 11232t^{6} + 65232t^{4} + 93312t^{2} - 6912\] \[B(t) = -54t^{18} - 1296t^{16} - 20088t^{14} - 211680t^{12} - 1319328t^{10} - 4437504t^{8} - 6604416t^{6} + 41472t^{4} + 7464960t^{2} + 221184\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 + 1992x - 6012$, with conductor $1200$ | |||||||||
Generic density of odd order reductions | $25/224$ |