Curve name | $X_{87g}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 2 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 6 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 4 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{87}$ | |||||||||
Curves that $X_{87g}$ minimally covers | ||||||||||
Curves that minimally cover $X_{87g}$ | ||||||||||
Curves that minimally cover $X_{87g}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -1728t^{16} - 8640t^{14} - 18144t^{12} - 20736t^{10} - 14040t^{8} - 5832t^{6} - 1539t^{4} - 270t^{2} - 27\] \[B(t) = 27648t^{24} + 207360t^{22} + 694656t^{20} + 1370304t^{18} + 1762560t^{16} + 1539648t^{14} + 914760t^{12} + 352836t^{10} + 74196t^{8} + 702t^{6} - 3726t^{4} - 810t^{2} - 54\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 18300x + 182000$, with conductor $14400$ | |||||||||
Generic density of odd order reductions | $89/672$ |