Curve name | $X_{87}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 6 \\ 4 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 4 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{25}$ | |||||||||
Curves that $X_{87}$ minimally covers | $X_{25}$ | |||||||||
Curves that minimally cover $X_{87}$ | $X_{181}$, $X_{182}$, $X_{183}$, $X_{184}$, $X_{185}$, $X_{186}$, $X_{198}$, $X_{204}$, $X_{269}$, $X_{270}$, $X_{273}$, $X_{274}$, $X_{87a}$, $X_{87b}$, $X_{87c}$, $X_{87d}$, $X_{87e}$, $X_{87f}$, $X_{87g}$, $X_{87h}$, $X_{87i}$, $X_{87j}$, $X_{87k}$, $X_{87l}$, $X_{87m}$, $X_{87n}$, $X_{87o}$, $X_{87p}$ | |||||||||
Curves that minimally cover $X_{87}$ and have infinitely many rational points. | $X_{181}$, $X_{183}$, $X_{185}$, $X_{204}$, $X_{87a}$, $X_{87b}$, $X_{87c}$, $X_{87d}$, $X_{87e}$, $X_{87f}$, $X_{87g}$, $X_{87h}$, $X_{87i}$, $X_{87j}$, $X_{87k}$, $X_{87l}$, $X_{87m}$, $X_{87n}$, $X_{87o}$, $X_{87p}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{87}) = \mathbb{Q}(f_{87}), f_{25} = -2f_{87}^{2} - 1\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 12501x + 368032$, with conductor $1989$ | |||||||||
Generic density of odd order reductions | $83/672$ |