Curve name | $X_{87i}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 6 \\ 4 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 4 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{87}$ | |||||||||
Curves that $X_{87i}$ minimally covers | ||||||||||
Curves that minimally cover $X_{87i}$ | ||||||||||
Curves that minimally cover $X_{87i}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -6912t^{12} - 20736t^{10} - 24192t^{8} - 13824t^{6} - 4320t^{4} - 864t^{2} - 108\] \[B(t) = 221184t^{18} + 995328t^{16} + 1907712t^{14} + 2032128t^{12} + 1285632t^{10} + 456192t^{8} + 60480t^{6} - 12960t^{4} - 5184t^{2} - 432\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 183x + 182$, with conductor $720$ | |||||||||
Generic density of odd order reductions | $635/5376$ |