| Curve name | 
$X_{87j}$ | 
| Index | 
$48$ | 
| Level | 
$8$ | 
| Genus | 
$0$ | 
| Does the subgroup contain $-I$? | 
No | 
| Generating matrices | 
$
\left[ \begin{matrix} 7 & 6 \\ 4 & 7 \end{matrix}\right],
\left[ \begin{matrix} 5 & 0 \\ 4 & 1 \end{matrix}\right],
\left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 3 & 0 \\ 4 & 3 \end{matrix}\right]$ | 
| Images in lower levels | 
 | 
| Meaning/Special name | 
 | 
| Chosen covering | 
$X_{87}$ | 
| Curves that $X_{87j}$ minimally covers  | 
 | 
| Curves that minimally cover $X_{87j}$ | 
 | 
| Curves that minimally cover $X_{87j}$ and have infinitely many rational 
points. | 
 | 
| Model | 
$\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is 
given by
\[y^2 = x^3 + A(t)x + B(t), \text{ where}\]
\[A(t) = -6912t^{12} - 20736t^{10} - 24192t^{8} - 13824t^{6} - 4320t^{4} - 
864t^{2} - 108\]
\[B(t) = -221184t^{18} - 995328t^{16} - 1907712t^{14} - 2032128t^{12} - 
1285632t^{10} - 456192t^{8} - 60480t^{6} + 12960t^{4} + 5184t^{2} + 432\]
 | 
| Info about rational points | 
| Comments on finding rational points | 
None | 
| Elliptic curve whose $2$-adic image is the subgroup | 
$y^2 = x^3 - 183x - 182$, with conductor $360$ | 
| Generic density of odd order reductions | 
$691/5376$ |