| Curve name |
$X_{87m}$ |
| Index |
$48$ |
| Level |
$8$ |
| Genus |
$0$ |
| Does the subgroup contain $-I$? |
No |
| Generating matrices |
$
\left[ \begin{matrix} 1 & 0 \\ 0 & 5 \end{matrix}\right],
\left[ \begin{matrix} 7 & 6 \\ 4 & 7 \end{matrix}\right],
\left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 3 & 0 \\ 4 & 7 \end{matrix}\right]$ |
| Images in lower levels |
|
| Meaning/Special name |
|
| Chosen covering |
$X_{87}$ |
| Curves that $X_{87m}$ minimally covers |
|
| Curves that minimally cover $X_{87m}$ |
|
| Curves that minimally cover $X_{87m}$ and have infinitely many rational
points. |
|
| Model |
$\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is
given by
\[y^2 = x^3 + A(t)x + B(t), \text{ where}\]
\[A(t) = -1728t^{12} - 5184t^{10} - 6048t^{8} - 3456t^{6} - 1080t^{4} - 216t^{2}
- 27\]
\[B(t) = -27648t^{18} - 124416t^{16} - 238464t^{14} - 254016t^{12} -
160704t^{10} - 57024t^{8} - 7560t^{6} + 1620t^{4} + 648t^{2} + 54\]
|
| Info about rational points |
| Comments on finding rational points |
None |
| Elliptic curve whose $2$-adic image is the subgroup |
$y^2 = x^3 - 732x - 1456$, with conductor $2880$ |
| Generic density of odd order reductions |
$25/224$ |