Curve name | $X_{87o}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 6 \\ 4 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 4 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{87}$ | |||||||||
Curves that $X_{87o}$ minimally covers | ||||||||||
Curves that minimally cover $X_{87o}$ | ||||||||||
Curves that minimally cover $X_{87o}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -1728t^{12} - 6912t^{10} - 10800t^{8} - 8208t^{6} - 3132t^{4} - 648t^{2} - 108\] \[B(t) = -27648t^{18} - 165888t^{16} - 425088t^{14} - 604800t^{12} - 515808t^{10} - 259200t^{8} - 63504t^{6} + 1296t^{4} + 3888t^{2} + 432\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 2033x - 6063$, with conductor $4800$ | |||||||||
Generic density of odd order reductions | $691/5376$ |