Curve name | $X_{87p}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 7 & 6 \\ 4 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 4 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{87}$ | |||||||||
Curves that $X_{87p}$ minimally covers | ||||||||||
Curves that minimally cover $X_{87p}$ | ||||||||||
Curves that minimally cover $X_{87p}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -1728t^{12} - 5184t^{10} - 6048t^{8} - 3456t^{6} - 1080t^{4} - 216t^{2} - 27\] \[B(t) = 27648t^{18} + 124416t^{16} + 238464t^{14} + 254016t^{12} + 160704t^{10} + 57024t^{8} + 7560t^{6} - 1620t^{4} - 648t^{2} - 54\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 732x + 1456$, with conductor $2880$ | |||||||||
Generic density of odd order reductions | $41/336$ |