| Curve name | $X_{95}$ | 
| Index | $24$ | 
| Level | $8$ | 
| Genus | $0$ | 
| Does the subgroup contain $-I$? | Yes | 
| Generating matrices | $
\left[ \begin{matrix} 7 & 7 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 3 & 0 \\ 4 & 3 \end{matrix}\right],
\left[ \begin{matrix} 3 & 1 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$ | 
| Images in lower levels |  | 
| Meaning/Special name |  | 
| Chosen covering | $X_{27}$ | 
| Curves that $X_{95}$ minimally covers | $X_{27}$, $X_{39}$, $X_{49}$ | 
| Curves that minimally cover $X_{95}$ | $X_{221}$, $X_{222}$, $X_{259}$, $X_{260}$, $X_{379}$, $X_{381}$, $X_{95a}$, $X_{95b}$, $X_{95c}$, $X_{95d}$, $X_{95e}$, $X_{95f}$, $X_{95g}$, $X_{95h}$ | 
| Curves that minimally cover $X_{95}$ and have infinitely many rational 
points. | $X_{221}$, $X_{222}$, $X_{95a}$, $X_{95b}$, $X_{95c}$, $X_{95d}$, $X_{95e}$, $X_{95f}$, $X_{95g}$, $X_{95h}$ | 
| Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{95}) = \mathbb{Q}(f_{95}), f_{27} = 
\frac{2}{f_{95}^{2}}\] | 
| Info about rational points | None | 
| Comments on finding rational points | None | 
| Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 + 5899x + 478973$, with conductor $7275$ | 
| Generic density of odd order reductions | $289/1792$ |