Curve name | $X_{49}$ | |||||||||
Index | $12$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 2 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 2 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 3 \\ 2 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{11}$ | |||||||||
Curves that $X_{49}$ minimally covers | $X_{11}$ | |||||||||
Curves that minimally cover $X_{49}$ | $X_{70}$, $X_{71}$, $X_{76}$, $X_{95}$, $X_{130}$, $X_{137}$ | |||||||||
Curves that minimally cover $X_{49}$ and have infinitely many rational points. | $X_{70}$, $X_{71}$, $X_{76}$, $X_{95}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{49}) = \mathbb{Q}(f_{49}), f_{11} = \frac{64}{f_{49}^{2} + 8}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 + 292x + 9588$, with conductor $300$ | |||||||||
Generic density of odd order reductions | $2659/10752$ |