Curve name | $X_{116a}$ | |||||||||||||||
Index | $48$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $0$ | |||||||||||||||
Does the subgroup contain $-I$? | No | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 9 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 3 \\ 20 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 21 \\ 28 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 9 \\ 12 & 3 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{116}$ | |||||||||||||||
Curves that $X_{116a}$ minimally covers | ||||||||||||||||
Curves that minimally cover $X_{116a}$ | ||||||||||||||||
Curves that minimally cover $X_{116a}$ and have infinitely many rational points. | ||||||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{18} - 5184t^{14} - 84672t^{10} - 497664t^{6} - 442368t^{2}\] \[B(t) = 432t^{27} + 31104t^{23} + 881280t^{19} + 12192768t^{15} + 80953344t^{11} + 191102976t^{7} - 113246208t^{3}\] | |||||||||||||||
Info about rational points | ||||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 158814156x - 360342145456$, with conductor $968256$ | |||||||||||||||
Generic density of odd order reductions | $9249/57344$ |