Curve name | $X_{210}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 2 \\ 14 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 6 \\ 10 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 14 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{61}$ | ||||||||||||
Curves that $X_{210}$ minimally covers | $X_{61}$, $X_{111}$, $X_{112}$ | ||||||||||||
Curves that minimally cover $X_{210}$ | $X_{210a}$, $X_{210b}$, $X_{210c}$, $X_{210d}$ | ||||||||||||
Curves that minimally cover $X_{210}$ and have infinitely many rational points. | $X_{210a}$, $X_{210b}$, $X_{210c}$, $X_{210d}$ | ||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{210}) = \mathbb{Q}(f_{210}), f_{61} = \frac{2}{f_{210}^{2}}\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 51x + 152$, with conductor $153$ | ||||||||||||
Generic density of odd order reductions | $9249/57344$ |