Curve name | $X_{112}$ | ||||||||||||
Index | $24$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 3 \\ 10 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 13 \end{matrix}\right], \left[ \begin{matrix} 1 & 3 \\ 12 & 15 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{45}$ | ||||||||||||
Curves that $X_{112}$ minimally covers | $X_{45}$ | ||||||||||||
Curves that minimally cover $X_{112}$ | $X_{210}$, $X_{216}$, $X_{220}$, $X_{231}$, $X_{310}$, $X_{323}$, $X_{326}$, $X_{351}$, $X_{361}$, $X_{385}$, $X_{396}$, $X_{403}$ | ||||||||||||
Curves that minimally cover $X_{112}$ and have infinitely many rational points. | $X_{210}$, $X_{216}$, $X_{220}$, $X_{231}$, $X_{323}$, $X_{326}$ | ||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{112}) = \mathbb{Q}(f_{112}), f_{45} = -f_{112}^{2} + 4\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 275x + 10933$, with conductor $4606$ | ||||||||||||
Generic density of odd order reductions | $85091/344064$ |