Curve name | $X_{214b}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 6 \\ 6 & 11 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 14 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 4 \\ 0 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{214}$ | ||||||||||||
Curves that $X_{214b}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{214b}$ | |||||||||||||
Curves that minimally cover $X_{214b}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -81t^{16} - 1296t^{15} - 12096t^{14} - 78624t^{13} - 341712t^{12} - 955584t^{11} - 1693440t^{10} - 1994112t^{9} - 2261088t^{8} - 3988224t^{7} - 6773760t^{6} - 7644672t^{5} - 5467392t^{4} - 2515968t^{3} - 774144t^{2} - 165888t - 20736\] \[B(t) = 3888t^{23} + 89424t^{22} + 959904t^{21} + 6386688t^{20} + 29937600t^{19} + 108706752t^{18} + 330625152t^{17} + 868589568t^{16} + 1891524096t^{15} + 3090700800t^{14} + 3078964224t^{13} - 6157928448t^{11} - 12362803200t^{10} - 15132192768t^{9} - 13897433088t^{8} - 10580004864t^{7} - 6957232128t^{6} - 3832012800t^{5} - 1634992128t^{4} - 491470848t^{3} - 91570176t^{2} - 7962624t\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 428257x + 84690144$, with conductor $84320$ | ||||||||||||
Generic density of odd order reductions | $9827/86016$ |