| Curve name | $X_{214}$ | 
| Index | $48$ | 
| Level | $16$ | 
| Genus | $0$ | 
| Does the subgroup contain $-I$? | Yes | 
| Generating matrices | $
\left[ \begin{matrix} 3 & 0 \\ 0 & 13 \end{matrix}\right],
\left[ \begin{matrix} 1 & 2 \\ 2 & 9 \end{matrix}\right],
\left[ \begin{matrix} 1 & 4 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$ | 
| Images in lower levels |  | 
| Meaning/Special name |  | 
| Chosen covering | $X_{66}$ | 
| Curves that $X_{214}$ minimally covers | $X_{66}$, $X_{105}$, $X_{107}$ | 
| Curves that minimally cover $X_{214}$ | $X_{214a}$, $X_{214b}$, $X_{214c}$, $X_{214d}$ | 
| Curves that minimally cover $X_{214}$ and have infinitely many rational 
points. | $X_{214a}$, $X_{214b}$, $X_{214c}$, $X_{214d}$ | 
| Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{214}) = \mathbb{Q}(f_{214}), f_{66} = 
\frac{8f_{214} + 8}{f_{214}^{2} - 2}\] | 
| Info about rational points | None | 
| Comments on finding rational points | None | 
| Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 10706425x - 10586268000$, with conductor $421600$ | 
| Generic density of odd order reductions | $9249/57344$ |