Curve name | $X_{214}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 0 \\ 0 & 13 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 2 & 9 \end{matrix}\right], \left[ \begin{matrix} 1 & 4 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{66}$ | ||||||||||||
Curves that $X_{214}$ minimally covers | $X_{66}$, $X_{105}$, $X_{107}$ | ||||||||||||
Curves that minimally cover $X_{214}$ | $X_{214a}$, $X_{214b}$, $X_{214c}$, $X_{214d}$ | ||||||||||||
Curves that minimally cover $X_{214}$ and have infinitely many rational points. | $X_{214a}$, $X_{214b}$, $X_{214c}$, $X_{214d}$ | ||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{214}) = \mathbb{Q}(f_{214}), f_{66} = \frac{8f_{214} + 8}{f_{214}^{2} - 2}\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 10706425x - 10586268000$, with conductor $421600$ | ||||||||||||
Generic density of odd order reductions | $9249/57344$ |