Curve name | $X_{214d}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 0 & 15 \end{matrix}\right], \left[ \begin{matrix} 1 & 4 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 2 & 9 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{214}$ | ||||||||||||
Curves that $X_{214d}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{214d}$ | |||||||||||||
Curves that minimally cover $X_{214d}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -324t^{16} - 5184t^{15} - 48384t^{14} - 314496t^{13} - 1366848t^{12} - 3822336t^{11} - 6773760t^{10} - 7976448t^{9} - 9044352t^{8} - 15952896t^{7} - 27095040t^{6} - 30578688t^{5} - 21869568t^{4} - 10063872t^{3} - 3096576t^{2} - 663552t - 82944\] \[B(t) = 31104t^{23} + 715392t^{22} + 7679232t^{21} + 51093504t^{20} + 239500800t^{19} + 869654016t^{18} + 2645001216t^{17} + 6948716544t^{16} + 15132192768t^{15} + 24725606400t^{14} + 24631713792t^{13} - 49263427584t^{11} - 98902425600t^{10} - 121057542144t^{9} - 111179464704t^{8} - 84640038912t^{7} - 55657857024t^{6} - 30656102400t^{5} - 13079937024t^{4} - 3931766784t^{3} - 732561408t^{2} - 63700992t\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 1713028x - 677521152$, with conductor $168640$ | ||||||||||||
Generic density of odd order reductions | $13411/86016$ |