Curve name | $X_{218}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 3 \\ 14 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 10 & 15 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{81}$ | ||||||||||||
Curves that $X_{218}$ minimally covers | $X_{81}$, $X_{110}$, $X_{111}$ | ||||||||||||
Curves that minimally cover $X_{218}$ | |||||||||||||
Curves that minimally cover $X_{218}$ and have infinitely many rational points. | |||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{218}) = \mathbb{Q}(f_{218}), f_{81} = \frac{f_{218}}{f_{218}^{2} + \frac{1}{8}}\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 3551240x + 2575835648$, with conductor $147712$ | ||||||||||||
Generic density of odd order reductions | $45667/172032$ |