Curve name | $X_{110}$ | ||||||||||||
Index | $24$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 3 \\ 14 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 6 & 11 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{45}$ | ||||||||||||
Curves that $X_{110}$ minimally covers | $X_{45}$ | ||||||||||||
Curves that minimally cover $X_{110}$ | $X_{209}$, $X_{216}$, $X_{218}$, $X_{231}$, $X_{312}$, $X_{321}$, $X_{325}$, $X_{349}$, $X_{367}$, $X_{383}$, $X_{387}$, $X_{397}$ | ||||||||||||
Curves that minimally cover $X_{110}$ and have infinitely many rational points. | $X_{209}$, $X_{216}$, $X_{218}$, $X_{231}$, $X_{312}$, $X_{349}$ | ||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{110}) = \mathbb{Q}(f_{110}), f_{45} = 8f_{110}^{2} - 4\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 + 5038x + 62292$, with conductor $3038$ | ||||||||||||
Generic density of odd order reductions | $85091/344064$ |