Curve name | $X_{81}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 3 \\ 6 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 2 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{28}$ | |||||||||
Curves that $X_{81}$ minimally covers | $X_{28}$, $X_{41}$, $X_{45}$ | |||||||||
Curves that minimally cover $X_{81}$ | $X_{218}$, $X_{220}$, $X_{262}$, $X_{264}$, $X_{363}$, $X_{364}$ | |||||||||
Curves that minimally cover $X_{81}$ and have infinitely many rational points. | $X_{218}$, $X_{220}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{81}) = \mathbb{Q}(f_{81}), f_{28} = \frac{8f_{81}}{f_{81}^{2} - 2}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 129800x + 17843712$, with conductor $202496$ | |||||||||
Generic density of odd order reductions | $1427/5376$ |