Curve name | $X_{220}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 3 \\ 12 & 15 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 10 & 15 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{81}$ | ||||||||||||
Curves that $X_{220}$ minimally covers | $X_{81}$, $X_{109}$, $X_{112}$ | ||||||||||||
Curves that minimally cover $X_{220}$ | |||||||||||||
Curves that minimally cover $X_{220}$ and have infinitely many rational points. | |||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{220}) = \mathbb{Q}(f_{220}), f_{81} = \frac{f_{220}^{2} + 2f_{220} - 1}{f_{220}^{2} + 1}\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 770x + 8224$, with conductor $4352$ | ||||||||||||
Generic density of odd order reductions | $45667/172032$ |