Curve name | $X_{105}$ | ||||||||||||
Index | $24$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 13 & 10 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 13 & 13 \\ 2 & 3 \end{matrix}\right], \left[ \begin{matrix} 15 & 13 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{39}$ | ||||||||||||
Curves that $X_{105}$ minimally covers | $X_{39}$ | ||||||||||||
Curves that minimally cover $X_{105}$ | $X_{214}$, $X_{221}$, $X_{224}$, $X_{232}$, $X_{282}$, $X_{288}$, $X_{301}$, $X_{302}$, $X_{388}$, $X_{389}$, $X_{390}$, $X_{394}$ | ||||||||||||
Curves that minimally cover $X_{105}$ and have infinitely many rational points. | $X_{214}$, $X_{221}$, $X_{224}$, $X_{232}$, $X_{288}$, $X_{302}$ | ||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{105}) = \mathbb{Q}(f_{105}), f_{39} = -f_{105}^{2} + 4\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 9235x + 342453$, with conductor $4606$ | ||||||||||||
Generic density of odd order reductions | $85091/344064$ |