| Curve name | $X_{242}$ | 
| Index | $48$ | 
| Level | $32$ | 
| Genus | $0$ | 
| Does the subgroup contain $-I$? | Yes | 
| Generating matrices | $
\left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 5 & 15 \\ 4 & 1 \end{matrix}\right],
\left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$ | 
| Images in lower levels |  | 
| Meaning/Special name |  | 
| Chosen covering | $X_{116}$ | 
| Curves that $X_{242}$ minimally covers | $X_{116}$ | 
| Curves that minimally cover $X_{242}$ | $X_{242a}$, $X_{242b}$, $X_{242c}$, $X_{242d}$, $X_{242e}$, $X_{242f}$, $X_{242g}$, $X_{242h}$ | 
| Curves that minimally cover $X_{242}$ and have infinitely many rational 
points. | $X_{242a}$, $X_{242b}$, $X_{242c}$, $X_{242d}$, $X_{242e}$, $X_{242f}$, $X_{242g}$, $X_{242h}$ | 
| Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{242}) = \mathbb{Q}(f_{242}), f_{116} = 
-f_{242}^{2}\] | 
| Info about rational points | None | 
| Comments on finding rational points | None | 
| Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 6x - 1$, with conductor $153$ | 
| Generic density of odd order reductions | $9249/57344$ |