Curve name | $X_{242}$ | |||||||||||||||
Index | $48$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $0$ | |||||||||||||||
Does the subgroup contain $-I$? | Yes | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 15 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{116}$ | |||||||||||||||
Curves that $X_{242}$ minimally covers | $X_{116}$ | |||||||||||||||
Curves that minimally cover $X_{242}$ | $X_{242a}$, $X_{242b}$, $X_{242c}$, $X_{242d}$, $X_{242e}$, $X_{242f}$, $X_{242g}$, $X_{242h}$ | |||||||||||||||
Curves that minimally cover $X_{242}$ and have infinitely many rational points. | $X_{242a}$, $X_{242b}$, $X_{242c}$, $X_{242d}$, $X_{242e}$, $X_{242f}$, $X_{242g}$, $X_{242h}$ | |||||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{242}) = \mathbb{Q}(f_{242}), f_{116} = -f_{242}^{2}\] | |||||||||||||||
Info about rational points | None | |||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 6x - 1$, with conductor $153$ | |||||||||||||||
Generic density of odd order reductions | $9249/57344$ |