Curve name | $X_{41}$ | |||||||||
Index | $12$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 2 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 2 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 2 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{11}$ | |||||||||
Curves that $X_{41}$ minimally covers | $X_{11}$, $X_{15}$, $X_{17}$ | |||||||||
Curves that minimally cover $X_{41}$ | $X_{80}$, $X_{81}$, $X_{82}$, $X_{131}$, $X_{138}$ | |||||||||
Curves that minimally cover $X_{41}$ and have infinitely many rational points. | $X_{80}$, $X_{81}$, $X_{82}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{41}) = \mathbb{Q}(f_{41}), f_{11} = \frac{8f_{41}^{2} + 16}{f_{41}^{2} - 2}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 1591x - 18317$, with conductor $17664$ | |||||||||
Generic density of odd order reductions | $2659/10752$ |