Curve name | $X_{68}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 2 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 6 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{23}$ | |||||||||
Curves that $X_{68}$ minimally covers | $X_{23}$, $X_{28}$, $X_{47}$ | |||||||||
Curves that minimally cover $X_{68}$ | $X_{255}$, $X_{264}$ | |||||||||
Curves that minimally cover $X_{68}$ and have infinitely many rational points. | ||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{68}) = \mathbb{Q}(f_{68}), f_{23} = \frac{f_{68}}{f_{68}^{2} + \frac{1}{4}}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 805514x - 264095580$, with conductor $16810$ | |||||||||
Generic density of odd order reductions | $109/448$ |