Curve name | $X_{47}$ | |||||||||
Index | $12$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 2 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 3 \\ 4 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 3 \\ 2 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{11}$ | |||||||||
Curves that $X_{47}$ minimally covers | $X_{11}$ | |||||||||
Curves that minimally cover $X_{47}$ | $X_{63}$, $X_{64}$, $X_{68}$, $X_{70}$, $X_{74}$, $X_{97}$, $X_{132}$, $X_{133}$, $X_{135}$, $X_{138}$ | |||||||||
Curves that minimally cover $X_{47}$ and have infinitely many rational points. | $X_{63}$, $X_{64}$, $X_{68}$, $X_{70}$, $X_{74}$, $X_{97}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{47}) = \mathbb{Q}(f_{47}), f_{11} = \frac{2}{f_{47}^{2}}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 375x + 6250$, with conductor $1800$ | |||||||||
Generic density of odd order reductions | $335/1344$ |