Curve name | $X_{74}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 2 \\ 2 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 3 \\ 0 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{26}$ | |||||||||
Curves that $X_{74}$ minimally covers | $X_{26}$, $X_{43}$, $X_{47}$ | |||||||||
Curves that minimally cover $X_{74}$ | $X_{275}$, $X_{278}$ | |||||||||
Curves that minimally cover $X_{74}$ and have infinitely many rational points. | ||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{74}) = \mathbb{Q}(f_{74}), f_{26} = \frac{f_{74}}{f_{74}^{2} - \frac{1}{4}}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 + 572906x - 1075433592$, with conductor $16810$ | |||||||||
Generic density of odd order reductions | $109/448$ |