Curve name | $X_{26}$ | ||||||
Index | $12$ | ||||||
Level | $4$ | ||||||
Genus | $0$ | ||||||
Does the subgroup contain $-I$? | Yes | ||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 2 & 3 \end{matrix}\right]$ | ||||||
Images in lower levels |
|
||||||
Meaning/Special name | |||||||
Chosen covering | $X_{11}$ | ||||||
Curves that $X_{26}$ minimally covers | $X_{7}$, $X_{11}$ | ||||||
Curves that minimally cover $X_{26}$ | $X_{59}$, $X_{60}$, $X_{73}$, $X_{74}$, $X_{83}$, $X_{139}$, $X_{140}$ | ||||||
Curves that minimally cover $X_{26}$ and have infinitely many rational points. | $X_{60}$, $X_{73}$, $X_{74}$, $X_{83}$ | ||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{26}) = \mathbb{Q}(f_{26}), f_{11} = \frac{8}{f_{26}^{2} + 1}\] | ||||||
Info about rational points | None | ||||||
Comments on finding rational points | None | ||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 168x - 855$, with conductor $468$ | ||||||
Generic density of odd order reductions | $89/336$ |