Curve name | $X_{29}$ | |||||||||
Index | $12$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 2 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 6 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 3 \\ 6 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{11}$ | |||||||||
Curves that $X_{29}$ minimally covers | $X_{11}$, $X_{16}$, $X_{19}$ | |||||||||
Curves that minimally cover $X_{29}$ | $X_{76}$, $X_{77}$, $X_{83}$, $X_{125}$, $X_{133}$ | |||||||||
Curves that minimally cover $X_{29}$ and have infinitely many rational points. | $X_{76}$, $X_{77}$, $X_{83}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{29}) = \mathbb{Q}(f_{29}), f_{11} = \frac{8f_{29}^{2} - 16}{f_{29}^{2} + 2}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 + 3699x - 118827$, with conductor $17664$ | |||||||||
Generic density of odd order reductions | $2659/10752$ |