Curve name | $X_{77}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 3 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 2 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{29}$ | |||||||||
Curves that $X_{77}$ minimally covers | $X_{29}$, $X_{43}$, $X_{45}$ | |||||||||
Curves that minimally cover $X_{77}$ | $X_{216}$, $X_{257}$, $X_{258}$, $X_{275}$, $X_{276}$, $X_{373}$, $X_{391}$ | |||||||||
Curves that minimally cover $X_{77}$ and have infinitely many rational points. | $X_{216}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{77}) = \mathbb{Q}(f_{77}), f_{29} = \frac{f_{77}^{2} - \frac{1}{2}}{f_{77}}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 + 307x - 4587$, with conductor $5376$ | |||||||||
Generic density of odd order reductions | $401/1792$ |