Curve name | $X_{216}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 2 \\ 10 & 15 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 10 & 15 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{77}$ | ||||||||||||
Curves that $X_{216}$ minimally covers | $X_{77}$, $X_{110}$, $X_{112}$ | ||||||||||||
Curves that minimally cover $X_{216}$ | $X_{520}$, $X_{533}$ | ||||||||||||
Curves that minimally cover $X_{216}$ and have infinitely many rational points. | |||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{216}) = \mathbb{Q}(f_{216}), f_{77} = \frac{f_{216}^{2} - \frac{1}{8}}{f_{216}}\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 14413x + 1182613$, with conductor $13056$ | ||||||||||||
Generic density of odd order reductions | $12833/57344$ |