Curve name | $X_{117b}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 8 & 5 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{117}$ | ||||||||||||
Curves that $X_{117b}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{117b}$ | |||||||||||||
Curves that minimally cover $X_{117b}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -432t^{16} + 1944t^{12} - 1323t^{8} + 324t^{4} - 27\] \[B(t) = -3456t^{24} - 23328t^{20} + 39528t^{16} - 23814t^{12} + 6885t^{8} - 972t^{4} + 54\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 12328367x + 16665315108$, with conductor $142296$ | ||||||||||||
Generic density of odd order reductions | $307/2688$ |