Curve name | $X_{117}$ | ||||||||||||
Index | $24$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{36}$ | ||||||||||||
Curves that $X_{117}$ minimally covers | $X_{36}$ | ||||||||||||
Curves that minimally cover $X_{117}$ | $X_{219}$, $X_{223}$, $X_{228}$, $X_{229}$, $X_{230}$, $X_{236}$, $X_{306}$, $X_{315}$, $X_{330}$, $X_{332}$, $X_{117a}$, $X_{117b}$, $X_{117c}$, $X_{117d}$, $X_{117e}$, $X_{117f}$, $X_{117g}$, $X_{117h}$, $X_{117i}$, $X_{117j}$, $X_{117k}$, $X_{117l}$, $X_{117m}$, $X_{117n}$, $X_{117o}$, $X_{117p}$ | ||||||||||||
Curves that minimally cover $X_{117}$ and have infinitely many rational points. | $X_{219}$, $X_{223}$, $X_{228}$, $X_{229}$, $X_{230}$, $X_{236}$, $X_{117a}$, $X_{117b}$, $X_{117c}$, $X_{117d}$, $X_{117e}$, $X_{117f}$, $X_{117g}$, $X_{117h}$, $X_{117i}$, $X_{117j}$, $X_{117k}$, $X_{117l}$, $X_{117m}$, $X_{117n}$, $X_{117o}$, $X_{117p}$ | ||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{117}) = \mathbb{Q}(f_{117}), f_{36} = \frac{2}{f_{117}^{2}}\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 18714x - 985367$, with conductor $5544$ | ||||||||||||
Generic density of odd order reductions | $643/5376$ |