The modular curve $X_{122f}$

Curve name $X_{122f}$
Index $48$
Level $16$
Genus $0$
Does the subgroup contain $-I$? No
Generating matrices $ \left[ \begin{matrix} 3 & 3 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 7 \\ 8 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 8 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 1 \end{matrix}\right]$
Images in lower levels
LevelIndex of imageCorresponding curve
$2$ $3$ $X_{6}$
$4$ $12$ $X_{13h}$
$8$ $24$ $X_{36h}$
Meaning/Special name
Chosen covering $X_{122}$
Curves that $X_{122f}$ minimally covers
Curves that minimally cover $X_{122f}$
Curves that minimally cover $X_{122f}$ and have infinitely many rational points.
Model $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -6912t^{12} + 27648t^{10} - 43200t^{8} + 32832t^{6} - 12123t^{4} + 1782t^{2} - 27\] \[B(t) = 221184t^{18} - 1327104t^{16} + 3400704t^{14} - 4838400t^{12} + 4153680t^{10} - 2182464t^{8} + 674730t^{6} - 108702t^{4} + 6318t^{2} + 54\]
Info about rational points
Comments on finding rational points None
Elliptic curve whose $2$-adic image is the subgroup $y^2 + xy = x^3 - x^2 - 7056x + 229905$, with conductor $63$
Generic density of odd order reductions $17/168$

Back to the 2-adic image homepage.