Curve name | X122o | ||||||||||||
Index | 48 | ||||||||||||
Level | 16 | ||||||||||||
Genus | 0 | ||||||||||||
Does the subgroup contain −I? | No | ||||||||||||
Generating matrices | [3303],[3083],[3001],[3307] | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | X122 | ||||||||||||
Curves that X122o minimally covers | |||||||||||||
Curves that minimally cover X122o | |||||||||||||
Curves that minimally cover X122o and have infinitely many rational points. | |||||||||||||
Model | P1, a universal elliptic curve over an appropriate base is given by y2=x3+A(t)x+B(t), where A(t)=−27648t16+138240t14−290304t12+331776t10−223020t8+88452t6−19359t4+1890t2−27 B(t)=−1769472t24+13271040t22−44457984t20+87699456t18−113021568t16+99734976t14−61347888t12+26214840t10−7585812t8+1402326t6−145962t4+5994t2+54 | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose 2-adic image is the subgroup | y2+xy=x3−x2−345753x−78165914, with conductor 441 | ||||||||||||
Generic density of odd order reductions | 25/224 |