Curve name | $X_{123a}$ | |||||||||||||||
Index | $48$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $0$ | |||||||||||||||
Does the subgroup contain $-I$? | No | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 15 & 15 \\ 6 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 6 & 3 \end{matrix}\right], \left[ \begin{matrix} 15 & 0 \\ 2 & 1 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{123}$ | |||||||||||||||
Curves that $X_{123a}$ minimally covers | ||||||||||||||||
Curves that minimally cover $X_{123a}$ | ||||||||||||||||
Curves that minimally cover $X_{123a}$ and have infinitely many rational points. | ||||||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -189t^{20} - 5076t^{19} - 60696t^{18} - 438696t^{17} - 2203524t^{16} - 8351424t^{15} - 25090560t^{14} - 61160832t^{13} - 121204512t^{12} - 192516480t^{11} - 238028544t^{10} - 216822528t^{9} - 126831744t^{8} - 20487168t^{7} + 40144896t^{6} + 41306112t^{5} + 16899840t^{4} + 248832t^{3} - 2930688t^{2} - 1271808t - 193536\] \[B(t) = -918t^{30} - 35316t^{29} - 612684t^{28} - 6326208t^{27} - 42797160t^{26} - 191791152t^{25} - 494829648t^{24} + 102269952t^{23} + 7988961312t^{22} + 44932459968t^{21} + 160949726784t^{20} + 432735851520t^{19} + 920784143232t^{18} + 1583438637312t^{17} + 2211355365120t^{16} + 2484482015232t^{15} + 2174846049792t^{14} + 1352611685376t^{13} + 387801603072t^{12} - 295069630464t^{11} - 504433391616t^{10} - 359680020480t^{9} - 123138994176t^{8} + 21467234304t^{7} + 49863942144t^{6} + 26113425408t^{5} + 4654153728t^{4} - 1833172992t^{3} - 1324449792t^{2} - 323813376t - 30081024\] | |||||||||||||||
Info about rational points | ||||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 51485737x + 142210260633$, with conductor $21632$ | |||||||||||||||
Generic density of odd order reductions | $2722915/11010048$ |