Curve name | $X_{156}$ | ||||||||||||
Index | $24$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $1$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 3 \\ 12 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 2 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 0 & 13 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{50}$ | ||||||||||||
Curves that $X_{156}$ minimally covers | $X_{50}$ | ||||||||||||
Curves that minimally cover $X_{156}$ | $X_{291}$, $X_{324}$, $X_{412}$, $X_{413}$, $X_{418}$, $X_{426}$ | ||||||||||||
Curves that minimally cover $X_{156}$ and have infinitely many rational points. | $X_{291}$, $X_{324}$ | ||||||||||||
Model | \[y^2 = x^3 + 8x\] | ||||||||||||
Info about rational points | $X_{156}(\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} \times\mathbb{Z}$ | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | None. All the rational points lift to covering modular curves. | ||||||||||||
Generic density of odd order reductions | N/A |